

Distributed and Parallel Computer Systems

CSC 423

Fall 2021-2022

Lecture 9

Sample protocols

INSTRUCTOR

DR / AYMAN SOLIMAN

> MobileIP

► TCP/UDP

Wireless LAN

Dr/ Ayman Soliman

Types of Networks

- > Types of networks: how to choose
 - o range, bandwidth, latency
- > Networking principles: how it works conceptually
 - \circ transfer mode, switching schemes
 - protocol suites, routing, congestion control
- Sample protocols: how it works in detail
 MobileIP, TCP/UDP, Wireless LAN

□ Internetworking

- To build an integrated network (an internetwork) we must integrate many subnets, each of which is based on one of these network technologies.
- \succ To make this possible, the following are needed:
 - 1) A unified internetwork addressing scheme that enables packets to be addressed to any host connected to any subnet.
 - 2) A protocol defining the format of internetwork packets and giving rules according to which, they are handled,
 - 3) Interconnecting components that route packets to their destinations in terms of internetwork addresses, transmitting the packets using subnets with a variety of network technologies.

□ Internetworking

➢ For example, on the Internet,

(1) is provided by IP addresses,

(2) is the IP protocol,

(3) is performed by the components called Internet Routers.

1.Interconnecting components

- > The routers are responsible for forwarding the internetwork packets
- Switches perform a similar function to routers, but for local networks only.
- Hubs -They can also be used to overcome the distance limitations on single segments and provide a means of adding additional hosts (Broadcasting).
- > The advantage of switches over hubs is that
 - \circ they separate the incoming traffic
 - reducing congestion on the other networks to which they are connected.

2. Internet protocols

- An important part of that research was the development of the TCP/IP protocol suite. TCP stands for Transmission Control Protocol, IP for Internet Protocol.
- > There are two transport protocols:-
 - 1. TCP (Transmission Control Protocol)
 - is a connection-oriented communication protocol that provides a reliable flow of data between two computers.
 - Example applications: (HTTP, FTP)
 - Connection is established.
 Information is sent.
 Connection is released.

Connection-Oriented Communication

Dr/ Ayman Soliman

2. Internet protocols

> There are two transport protocols:

- 2. UDP (User Datagram Protocol)
 - is a connectionless communication protocol that sends independent packets of data, called datagrams, from one computer to another with no guarantees about arrival or order of arrival.
 - Each message is routed independently from source to destination
 - Similar to sending multiple emails/letters to a friends, each containing part of a message.

Connectionless Communication

2. Internet protocols

Difference: Connection-oriented and Connectionless service

- 1. In connection-oriented service authentication is needed, while connectionless service does not need any authentication.
- 2. Connection-oriented protocol makes a connection and checks whether message is received or not and sends again if an error occurs, while connectionless service protocol does not guarantee a message delivery.

□ The programmer's conceptual view of a TCP/IP Internet

> The success of TCP/IP is based on:

- their independence of the underlying transmission technology,
- enabling internetworks to be built up from many heterogeneous networks and data links.

3. IP addressing

- The most challenging aspect of the design of the Internet protocols was:
 - the construction of schemes for naming and addressing hosts
- The scheme used for assigning host addresses to networks and the computers connected to them had to satisfy the following requirements:
 - It must be universal any host must be able to send packets to any other host on the Internet.
 - It must be efficient in its use of the address space

Addressing on the Internet Protocol

- addresses used in source and destination fields of the Internet Protocol requirements
 - define a unique address for any node on the Internet
 - o define a sufficiently large address space
 - IPv4 (1982): 32-bit addresses for 2³² (appr. 4 billion) addresses insufficient due to
 - \checkmark unforeseen growth of internet
 - \checkmark inefficient use of address space
 - IPv6 (1994): 128-bit addresses for 2^{128} (appr. $3x10^{38}$) addressable nodes
 - ✓ max. 7x1023 IP addresses per m2 of entire earth surface
 - \checkmark if as inefficiently allocated as phone numbers: 10³ per m²
 - support a flexible routing scheme, but addresses themselves should not contain routing information

Addressing in the Internet Protocol

- > Addressing in the Internet Protocol
 - o address class structure

Addressing

> Addressing in the Internet Protocol

o decimal address representation

Internet Protocol

- ➢ IP version 6 (IPv6), 1994
 - enlarged address space
 - \circ improved routing speed

